$$
\begin{aligned}
& \begin{array}{l}
\text { Gulois/monodromy } \\
\text { groups in } \\
3 D \text { Reconstruction }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maggie began Duke }
\end{aligned}
$$

Overview
O Minimal problems are geometrically interesting
enumerative problems/
parametrized
polynomial systems.

O Gylois / monodromy / \mathbb{C} groves identify structure in certain problems. Can be computed numerically.
O We consider clussical ? new examples of practical interest.

$$
\begin{aligned}
& \mathbb{P}^{3} \rightarrow \rightarrow \mathbb{P}^{2} \\
& \left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \mapsto\left(\begin{array}{c}
x / z \\
y / z \\
1
\end{array}\right) \\
& \left.\begin{array}{l}
=\underbrace{\left(\begin{array}{lll}
x \\
y \\
z
\end{array}\right)}_{\substack{\text { camera } \\
m \text { atrix }}} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} 0\right. \\
0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)
\end{aligned}
$$

The relative pose $(R: \vec{t}) \in S E(3) m a p s$ points between two camera frames.
Problem. Recover relative $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \mapsto R\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\vec{f}$ pose from corresponding
features (egg. points) in sever images.

The relative pose
$(R: \vec{f}) \in S E(3) \mathrm{maps}$
points between two
camera a frames.
Problem. Recover relative pose from corresponding
features (eg. points) in several images.

- Inherent ambiguity Can only re over \vec{t} up to scale.
- Relative pose determines world points (up to scale.)

Point correspondence.

$$
d_{2} \vec{y}=d_{1} R \vec{x}+\vec{t}
$$

Essential matrix
(Longuet-7tigyins,'81)

$$
\left[\begin{array}{l}
{\left[=\left(\begin{array}{ccc}
0 & -t_{3} & t_{2} \\
t_{3} & 0 & -t_{1} \\
-t_{2} & t_{1} & 0
\end{array}\right)\right.} \\
{[+]_{x}} \\
\vec{y}^{T} E \vec{x}=0
\end{array}\right.
$$

RANSAC (Fiche resoles, 8 I)
needs

$$
\stackrel{e d s}{\approx} 1 /(1-p)^{n}
$$

iterations on average.

- n should be small
- Minimal solvers must be fast ($\approx 10-100 \mathrm{ks}$.)

$$
V_{\text {ess }}=i m\left(\begin{array}{c}
\left.\varphi: S O(3, t) \times P\left(q^{3}\right) \rightarrow P\left(4^{3 \times 3}\right)\right) \\
(R, \vec{t}) \mapsto[\overrightarrow{7}]_{x} R
\end{array}\right.
$$

Algebrdic geometry (Demazure '88)

$$
\text { persp.e.ctive } \begin{gathered}
\text { dim Vess }=5 \quad \text {. dey vess }
\end{gathered}=10
$$

- $\sum_{v_{\text {ess }}}=\left\langle E E^{\top} E-\frac{1}{2} \operatorname{tr}\left(E E^{\top}\right) E\right.$, det $\left.E\right\rangle$

$\S 2$ Minimal Problems $B=\left(\mathbb{P}^{2} \times P^{2}\right)^{5} \times=\left\{\left(x_{1},-x_{5}, R, R \rightarrow,\left(x, x_{1}\right)\right.\right.$
as Branched Covers

$$
\in\left(P^{3}\right)^{5} \times 50(3) \times P^{2} \times B \left\lvert\, \begin{array}{ll}
\left(\begin{array}{ll}
(& \vec{o}
\end{array}\right) \vec{x}_{i}=\vec{x}_{i} \\
(R & \vec{f})
\end{array} \vec{x}_{i}=\vec{y}_{i} \Gamma\right.
$$

d) $\pi: X \longrightarrow B$ is a branched cover of degree 20.

- Twisted pair di $X \backslash \operatorname{ram}(\pi) \rightarrow X \mid \operatorname{ran}(\pi)$ is a (rational) deck transformation.
\Rightarrow Galois/ gropacts imprimitely monodrony graf on $\pi^{-1}(6)$

Let $\pi: x \rightarrow B$ be a branched cover of deyree e.
$[n]=S_{2}^{1} \ldots, h^{2} \quad S_{n}=$ symmetric group on $[n]$.
$S_{n} Z_{[m]} S_{m} \longrightarrow S_{m n}$ preserves

1	2	\cdots	m
$m+1$	$m+2$	\cdots	$2 m$
\vdots	\vdots	\ddots	\vdots
$m n-m+1$	$m n-m+2$	\cdots	$m n$

partition into columns.

1. Important to keep track of the action.

Minimal $z=0$
Want problems w/ simple
features and small degree

(Possibly after reformulation.)

(0., John, Leykim, Pajodla)

$\because \because: 8888$.
\%\%\%\%88888888\%

Let $\pi: x \rightarrow B$ be a branched cover of deyree e.

OHomstopy continuation tracks e implicitly-defined lifts of $p a t h \gamma:[a, 1] \rightarrow B$ B via predictor/ corrector scheme

Uncertainty

- Floating point, rounding errors
- Path-jumping

- Whole group or subgroup?

Minima problems with complete visibility (cal. relative pose.)

- Among problems of degree $<1,000$,

either fyll-symmetric or imprimitive.
- Factorizations for imprimitive causes always induced by deck transformations.

Partial visibility

- Can have
composite problems which are minimal. - Not all factorization

CAP 4.10.2 of 19-Jun-2019 https://ww.gap-system.org
Architecture: x86_64-pc-linux-gnu-default64-kv3
Configuration: gmp 6.2.0, readline
Loading the library and packages ...
Packages: Alnuth 3.1.1, AtlasRep 1.5.1, AutPGrp 1.10, CTblLib 1.2.2, FactInt 1.6.3,
GAPDoc 1.6.2, IO 4.7.0, Polycyclic 2.14, PrimGrp 3.3.2, SmallGrp 1.3, TomLib 1.2.8, TransCip 2.0.4
Try '??help' for help. See also '?copyright', '?cite' and '?authors'
gap> p0:= PermList([11, 12, 3, 4, 9, 10, 7, 8, 5, 6, 1, 2]);
$\mathrm{pl}:=\operatorname{PermList}([12,11,7,8,10,9,3,4,2,1,6,5])$;
p2: $=\operatorname{PermList}([5,6,7,8,1,2,3,4,9,10,11,12])$;
p3:= PermList($[6,5,11,12,2,1,9,10,4,3,8,7])$; Emas (Cu) $)$ mList ($(11,12,7,8,9,10,3,4,1,2,5,6])$; p5:= PermList $([6,5,10,9,2,1,12,11,7,8,3,4])$; p6: $=\operatorname{PermList}([5,6,11,12,1,2,9,10,3,4,7,8])$;
G:=Group(p0, p1, p2, p3, p4, p5, p6);
$(1,11)(2,12)(5,9)(6,10)$
gap> $(1,12,5,10)(2,11,6,9)(3,7)(4,8)$
gap> $(1,5)(2,6)(3,7)(4,8)$
gap> $(1,6)(2,5)(3,11,8,10)(4,12,7,9)$
gap> $(1,11,5,9)(2,12,6,10)(3,7)(4,8)$
gap> $(1,6)(2,5)(3,10,8,11)(4,9,7,12)$
gap> $(1,5)(2,6)(3,11,7,9)(4,12,8,10)$
gap> $\operatorname{Group}([(1,11)(2,12)(5,9)(6,10),(1,12,5,10)(2,11,6,9)(3,7)(4,8),(1,5)(2,6)(3,7)(4,8),(1,6)(2,5)$ $(3,11,8,10)(4,12,7,9),(1,11,5,9)(2,12,6,10)(3,7)(4,8),(1,6)(2,5)(3,10,8,11)(4,9,7,12),(1,5)(2,6)$ $(3,11,7,9)(4,12,8,10)])$
gap> $C 1$:= Image(ActionHomomorphism(C, Blocks(G, [1..12]), OnSets));
$\operatorname{Group}([(1,6)(3,5),(1,6,3,5)(2,4),(1,3)(2,4),(1,3)(2,6,4,5),(1,6,3,5)(2,4),(1,3)(2,5,4,6),(1,3)(2,6,4,5)])$
gap> StructureDescription(G1);
"S4"
gap> StructureDescription(C);
" (C2 x C2) : S4"
gap> G2 := Image(ActionHomomorphism(C1, Blocks(C1, [1..6]), OnSets));
$\operatorname{Group}([(1,3,2),(2,3)])$

Promising new
candidates $\left(\begin{array}{cc}3 & \text { probably } \\ 0 * \\ \text { too exotic }\end{array}\right)$
$\because S_{2} \because\left(S_{2}\left(S_{\underline{16}} \cap A_{32}\right) \cap A_{64}\right.$
64

$$
\stackrel{4}{\bullet \bullet} \int_{2}\left(\int_{2}\right)\left(\int_{2}\left(s_{2}\left(s_{2} \cap A_{4}\right)\right)\right.
$$

32 + explicit deck transformation,

Out 100 k

- So far, we see the following patterns:
- Full-symmetric / imprimitive dichotomy
- All imprimitive / decomposable minimal problems are induced by deck transform at ion (complete visibility) or elimination/prasection Cpartial visibility)
- Present and future work

- Find factorizations E build faster solvers
- Expand scape to other camera models ¿ beyond relative pose

